# Towards Ultra Light-weight Solutions for IMD Security

Saied Hosseini Khayat, PhD

Assistant Professor

Digital Systems Lab

Electrical Engineering Department

Ferdowsi University of Mashhad, Iran

### Motivation

• Wireless + IMD → Convenience - Security



### Motivation

- Kevin Fu, "Reducing the risks of implantable medical devices: A prescription to improve security and privacy of pervasive health care" Inside Risk 218, Communications of the ACM, 52(6):25–27, June 2009.
- D. Halperin, et al., "Security and Privacy for Implantable Medical Devices," IEEE Pervasive Computing, Jan-March 2008.
- K. Malasri, L. Wang, "Securing Wireless Implantable Devices for Healthcare: Ideas and Challenges," IEEE Communications Magazine, July 2009.
- D. Halperin, et al., "Pacemakers and Implantable Cardiac Defibrillators: Software Radio Attacks and Zero-Power Defenses," IEEE Symposium on Security and Privacy, 2008.

### Vision

- IMD security is **vitally important**.
  - No one buys a house, car lacking a door-lock.
- Security is expensive.
- IMD has no room (sost, area, power) for security.
- Security can be transparent and low-cost.
  - Should not get in the way of functionality, performance.
  - Should not increase cost, power consumption.
- Protect the "common patient" against the "common bad guy."

Equip a normal house with a normal door-lock.

Heavy-weight security



Light-weight security



## Our (Partial) Solution

- Employ a lightweight 64-bit block cipher.
  - 128-bit block ciphers too heavy
  - Stream ciphers require bit-level synchronization of sender and receiver. Hard to maintain.
- Create a lightweight protocol around cipher.
  - Existing protocols (e.g. IPSEC) too heavy
- Implement protocol in dedicated hardware.
  - Software implementation wasteful of power
- Use subthreshold logic to minimize power.
  - Goal: Minimum power for a decent level of security

### **Broad Taxonomy of Medical Sensors**



### **IMD** Requirements

- Sensing and digital signal processing (e.g. ECG)
- Actuating (e.g. defibrillation shock)
- Radio communication
- High reliability
- Minimal device size
- Small nonrechargeable battery (~5000 Joules)
- Very long operational life-time (~10 years)
  - $\rightarrow$  10-20 µW average power for the entire device!

Demands ultra low-power electronics

Any room left for crypto processing ??

### Goal in the rest of this talk

- To present a lightweight protocol that protects against
  - Breach of privacy (i.e., eavesdropping)
  - Malicious control, reprogramming of IMD (i.e., masquerading)

### Assumptions

- A secret key is shared between IMD and BaseStation.
- The employed block cipher is not "broken."
- Long data blocks are segmented into 64-bit blocks.
- Each IMD has a unique ID (serial number).
- No guaranteed delivery of packets
- No specific assumption about MAC layer

### **Attack Model**

- Attacker does not have:
  - Physical access to IMD
  - Physical access to Base Station
  - Secret keys
- Attacker <u>can</u>:
  - Listen to messages
  - Transmit fake messages
  - Save and replay messages

Above model differs from RFID and sensor network.

Covers most of common attacks

# **Lightweight Block Ciphers**



### PRESENT Block Cipher

2007. Bogdanov, et al



#### **Features**

- Symmetric block cipher
- 64-bit block
- 80-bit key
- 31 rounds
- Simple S-P network
- 16 identical 4x4 Sboxes
- On-the-fly key schedule
- Resistance to differential and linear attacks

### PRESENT Block Cipher

2007. Bogdanov, et al



#### **Resources**:

MUX21: 144

XOR2: 69

DFF: 149

Sbox: 17

Of PRESENT

Vdd=0.35v, f=25KHz ~41 nW, 0.8 pJ/bit

(Simulated 0.18 um TSMC)

65nm, Vdd=0.35v, f=30 KHz 210 nW, 5.8 pJ/bit

C'edric Hocquet, et al, JOURNAL OF CRYPTOGRAPHIC ENGINEERING, Feb 2011

### **Communication Modes**

**Receive Mode** 



**Transmit Mode** 



# **Lightweight Protocol**

**Receive Mode** 





# **Lightweight Protocol**

#### Receive Side

#### Receive 2 X 64-bit Ciphertext Packet $C_2$ $C_1$ 64 bits 64 bits D 80 bits 80 bits M<sub>2</sub> 64 bits $M_1$ 64 bits **BIT UNMIXER** 32 bits 64 bits 32 bits Data

#### **Transmit Side**



Validity condition: X=X' if (S=S') AND (B'>A)Counter Advancement: If valid then A=B'

# **Lightweight Protocol**



# Required Resources

When Tx and Rx designed as separate modules

| Module                   | Rx           | Tx           |
|--------------------------|--------------|--------------|
| Cipher module            | 1 Decryption | 1 Encryption |
| Key register             | 80 DFF       | 80 DFF       |
| A/B counter              | 32 DFF       | 32 DFF       |
| S register               | 32 DFF       | 32 DFF       |
| Data register            | 64 DFF       | 64 DFF       |
| 32-bit binary comparator | 2            | 0            |
| 32- bit adder            | 0            | 1            |
| Mux2-1                   | 64           | 64           |
| Memory                   | 0            | 0            |
| Total Power (nW)         | ~83          | ~77          |

Subkeys are generated on the fly, so no memory is needed. Otherwise 2560 bits of memory would be needed.



Sum = ~160 nW

## Other Security Challenges

- Denial of Service Attacks:
  - **Jamming**: Adversary blocks communications by transmitting strong signal (noise).
    - Solution: Lightweight UWB? Lightweight Spread Spectrum?
  - **Battery drain**: Adversary keeps IMD receiver frequently busy by sending fake packets.
    - Solution: Energy harvesting for IMD receiver?

### Conclusion

• IMD security is vitally important.

• Lightweight IMD security is feasible.

An example protocol was presented.

# Thank you.